INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND MAPPING AGRICULTURAL SYSTEM

Hands-On Workshop

Port Moresby, PNG

2023

Agenda for workshop

- Principles of GIS
- Data formats and GIS
- Projections and GPS data
- Spatial data integration
 - Population
 - Agricultural system

The Principles of Geographic Information Systems (GIS)

Definition and importance of GIS

- GIS stands for Geographic Information System
- GIS is a computer-based system that captures, stores, manages, analyzes, and visualizes spatial data, including maps, satellite imagery, and other geospatial information
- GIS allows for the integration and analysis of data from multiple sources, helping to understand patterns, relationships, and trends in geographic data

Components of GIS

- Data: The foundation of GIS is data, including
 - spatial data (e.g., geographic features, locations) and
 - attribute data (e.g., characteristics, and attributes associated with spatial data)
- Software: GIS software enables the creation, management, analysis, and visualization of spatial data.
 e.g., ArcGIS, QGIS, and Google Earth
- Hardware: GIS requires hardware, such as computers, servers, and GPS devices, to process and store data
- People: Skilled GIS professionals are needed to operate and analyze GIS data, interpret results, and make informed decisions

What kind of questions can GIS address?

- Location
- Quantity (Measurement)
- Patterns
- Trends (Temporal Aspect)
- Surrounding Conditions & Relationships
- Implications (Planning for the future)

Importance of GIS

- Improved Decision Making:
 - by providing visualizations, analysis, and insights from spatial data.
- Spatial Analysis and Modeling:
 - overlay analysis, proximity analysis, and network analysis.
- Data Integration and Management:
 - satellite imagery, aerial photography, GPS data, and other spatial datasets.
- Visualization and Communication:
 - maps, charts, and other graphical representations of spatial data.
- Cost and Time Savings:
 - GIS helps in optimizing resources, reducing costs
- Environmental and Social Impact Assessment:
 - infrastructure development, land use planning, and natural resource management.

Geospatial Analysis

- It involves using GIS tools and techniques to analyze and interpret spatial data
- Include tasks such as overlay analysis, buffer analysis, spatial query, spatial statistics, and network analysis
- Helps in understanding spatial patterns, relationships, and trends, and supports decisionmaking in various fields

- Cartography is the science and art of creating maps using GIS
 - designing and creating visually appealing maps that convey spatial information effectively
 - includes elements such as map layout, symbology, scale, projection, and map design principles

Location

Implications- Network analysis

Quality - Trends

Where is child mortality the highest?

Mortality rate per 1,000 live births, 2000 and 2017

https://www.healthdata.org/papua-new-guinea

Trends - Spread

Implications- West Nile

Basic concepts: Spatial data

- Spatial data refers to data that has a geographic or spatial component, such as location, shape, and attributes associated with geographic features
- Spatial data can be represented as <u>points</u>, <u>lines</u>, <u>polygons</u>, or <u>raster images</u>, and can be stored in various formats, such as vector and raster
- Spatial data is the foundation of GIS, and it can be collected, created, and analyzed using GIS tools and techniques

GIS Data Types and Sources

- GIS data can be categorized into two main types:
 - vector data
 - raster data
- Vector data represents geographic features as points, lines, or polygons, and is used to represent discrete and well-defined features such as roads, buildings, and land parcels
- Raster data represents geographic features as a grid of cells, where each cell contains a value that represents an attribute or characteristic and is used to represent continuous data such as elevation, temperature, and precipitation

Vector Data

- Points represent a single location, such as a well or a city center
- Lines represent linear features, such as roads, rivers, or pipelines
- Polygons represent enclosed areas, such as land parcels, administrative boundaries, or vegetation cover

Vector data

Polygon

Line

Point

Vector data are also called Shapefiles

Raster Data

- Each cell in a raster represents a location and contains a value that represents a specific attribute, such as elevation, temperature, or land cover
- Raster data is used for continuous data analysis, modeling, and visualization

Raster data

Basic concepts: Layers

- Layers are the building blocks of GIS, and they represent different thematic information that can be stacked on top of each other to create a map
- Layers can include features such as roads, buildings, rivers, and land parcels, each represented as a separate layer with its own attributes and properties
- Layers can be added, removed, and manipulated in GIS software to create complex spatial analyses and visualizations

GIS map components

- A Map is made up of Layers or Shapefiles
- Layers contain Features
- Features can take the form of Points, Lines and Polygons, and are known collectively as Vector Data
- Layers contain Features, and each Feature is linked to a row of information in the Attribute table

Layers contain features

Each map is a system of layers

Each layer will have either Vector Data or Raster Data

Basic concepts: Attribute Data

- Refers to the non-spatial information associated with spatial features, such as attributes or characteristics of geographic features
 - e.g., name, population, elevation, land use, and other relevant information
- Stored in tabular format and linked to spatial data using unique identifiers, allowing for analysis and querying of spatial and attribute data together

Attribute table

Districts

Data sources

- GIS data can be obtained from various sources, including:
 - Publicly available data, such as government agencies, academic institutions, and NGO
 - Commercial data providers that offer specialized GIS datasets for specific industries or applications
 - Crowdsourced data collected by individuals or communities, such as **OpenStreetMap**
 - Field-collected data using GPS or other data collection devices
 - Remote sensing data, such as **satellite** imagery, aerial photographs, and LiDAR data

Data Consideration

- Data quality refers to the accuracy, precision, and completeness of the data
- Data accuracy refers to how closely the data represents the real-world features
- Data scale refers to the level of detail or resolution of the data
- Data relevance refers to how well the data meets the needs of the specific GIS application

The steps taken from feature data to Map Analysis

The map design process

GIS Software and Tools

- GIS software refers to the applications and tools used for creating, managing, analyzing, and visualizing geographic data
- Popular GIS software includes ArcGIS by Esri, QGIS, MapInfo, and Google Earth Pro
- These software provide a wide range of functionalities, such as data visualization, spatial analysis, data editing, and map production

GIS Tools

• GIS tools are specialized software or plugins that extend the capabilities of GIS software

E.g., spatial analysis tools, data management tools, geocoding tools, and remote sensing tools

• These tools enhance the functionality of GIS software and enable users to perform specific tasks or analysis on geographic data

How to get started

Q ArcMap - Getting Started			8 ×	
Open existing map or make new m	ap using a template			
Existing Maps Recent Browse for more Wer Maps My Templates Templates Standard Page Sizes Standard Page Sizes North American (Traditional Layouts Industry USA World Browse for more	My Templates		* *	
	Architectural Page Sizes	9 in. x 12 in.	12 in. x 18 in.	
	ARCH A Landscape	ARCH A Portrait	ARCH B Landscape	
D: \Users \mkedir \AppData \Roamin	g\ESRI\Desktop10.0\ArcMap\Templa	ates\Wormal.mxt		
Default geodatabase for this ma D: \Users \mkedir \Documents \Ar	ap: cGIS\Default.gdb		What is this?	
Do not show this dialog in the future.				

Add Data		23			
Look in: 📔] C:\ 🔹 🏠 🕼 🕇 🖬 🕶	🖴 🗊 🚳			
Cado					
	Connect to Folder				
MSOCac					
Program	Choose the folder to which you want to connect:				
Program					
Program					
Python26	🔺 🚣 Local Disk (C:)				
Python27	D 🔒 ado				
Student	ARCGIS10				
	MSOCache				
Namer	Program Files				
Name.	🛛 🎍 Program Files (x86)	Add			
Show of type	🛛 🕒 ProgramData	Cancel			
	Python26				
	Python27				
	A 🚺 Student				
	d GISLab				
	Folder: C:\Student				
	Make New Folder OK Cancel				
l	L				

Basic mapping toolbar

LAB 01

Overview: Create a basic overview map of PNG.

- Introduce the ArcMap Interface & Toolbars
- Basic Symbology & Symbol hierarchies
- Basic Querying
- Labeling
- Layout
- Final Output will be exported to PowerPoint

Let's open up an ArcGIS session right now, and you can begin working on the first exercise

Advanced Symbology- Lab02

Hands - On Workshop

Lab01 – Questions?

Lab 02: Advanced Symbology

In Lab 01, we mapped the data, now we will begin to classify it and choose hierarchies to better understand spatial elements of the country!

Lab 02: Advanced Symbology

Instead of displaying single feature of town and road, we can map large vs. small cities, or primary, secondary, tertiary roads.

The layer properties; table links to the attribute table that you worked with in lab01

The manner in which you are able to classify your data depends on the data type (text vs. numerical)

Layer Properties	1		\times
General Source Selecti	ion Display Symbology Fields [Definition Query Labels Joins & Relates Time HTML F	opup
Features	Draw quantities using symbol s	size to show relative values. Import	
Categories	Fields	Classification	
Quantities	Value: S Pop	Natural Breaks (Jenks)	
Graduated symbols	Normalization: None	Classes: 5 Classify	
Proportional symbols			
Charts V Multiple Attributes	Symbol Size from: 4 to: 18		
Hample / Knoutes	Symbol Range	Label	
	 0 - 4785 	0 - 4785	
	4786 - 13970	4786 - 13970	
The second	13971 - 37825	13971 - 37825	
	37826 - 148934	37826 - 148934	
53.	148935 - 364125	148935 - 364125	
	Show class ranges using feature va	alues Advance <u>d</u> •	
		OK Cancel	Apply

Within the layer properties there is a classification window

 Allows you to decide how to classify your data (Quintiles, Natural Breaks, Standard Deviation, Manual, etc.

•Allows you to create your own "Break Values"

•Provides a histogram of the specific variable

•Gives Classification Statistics

Classification				×
Classification		Clas	sification Statistics	
Method: Manual		~ Cou	unt:	(A)
Classes: 2		Min	imum:	
Data Exclusion		Ma	ximum:	3641
	Courding	Sun	n: 20'	82/3
Exclusion	Sampling	Me	dian:	14 ~
Columna 100		<		
	Show Std. Dev.	how Mean		VVZ
F0- 9			7 55	Break Values > %
			6413	50000
			°	364125
40-				
30-				· · · · · · · · · · · · · · · · · · ·
20-				
10-				
0				OK
j Ö 91	031 182063	273094	364125	OK
Snap breaks to data values				Cancel

At the beginning of Lab 02 exercise the road network had the same line symbol regardless of their level of importance.

This is sufficient for a basic informational map, but most GIS maps are used as a visual interpretation of tabular data, therefore we will learn how to visualize such data in this lab.

Data formats and ArcCatalog

Several files comprise one shapefile

← → 👻 🛧 This PC → Local Disk (C:) > DSG > Emily > Papua New Guinea > GIS tra	ining → Lab01			ٽ ~	Search Lab01	م
	Name	Date modified	Туре	Size			
V X Quick access	Districts.cpg	8/23/2018 2:54 PM	CPG File	1 KB			
Desktop	Districts.dbf	8/30/2018 10:13 AM	DBF File	30 KB			
🔸 Downloads 🛛 刘	Districts.prj	8/23/2018 2:54 PM	PRJ File	1 KB			
🗄 Documents 🛛 🛪	Districts.sbn	8/23/2018 2:54 PM	SBN File	1 KB			
E Pictures #	Districts.sbx	8/23/2018 2:54 PM	SBX File	1 KB			
🝐 Google Drive 🖉	Districts.shp	8/23/2018 2:54 PM	SHP File	5,139 KB			
GIS training	Districts.shp.IFPRI-CS14020.18968.11248.s	9/4/2018 9:19 AM	LOCK File	0 KB			
Maps	Districts.shp	8/23/2018 2:54 PM	XML Document	15 KB			
Survey Data	Districts.shx	8/23/2018 2:54 PM	SHX File	1 KB			
Temp	Provinces.CPG	8/23/2018 2:09 PM	CPG File	1 KB			
iemp	Provinces.dbf	8/30/2018 10:13 AM	DBF File	4 KB			
Evploror	Provinces.prj	8/23/2018 2:09 PM	PRJ File	1 KB			
ο Εχρισι εί,	Provinces.sbn	8/23/2018 2:09 PM	SBN File	1 KB			
	Provinces.sbx	8/23/2018 2:09 PM	SBX File	1 KB			
e several	Provinces.shp	8/23/2018 2:09 PM	SHP File	5,006 KB			
	Provinces.shp	8/23/2018 2:09 PM	XML Document	13 KB			
h shanofilo	Provinces.shx	8/23/2018 2:09 PM	SHX File	1 KB			
пзпарспісь	Rivers.cpg	8/23/2018 2:07 PIVI	DPE File	174 / 2			
l of those	Rivers pri	8/23/2018 2:07 PM	DDF FILE	424 ND			
I OI LIIESE	Rivers shn	8/23/2018 2:07 PM	SBN File	23 KB			
C 11	Rivers.sbx	8/23/2018 2:07 PM	SBX File	2 KB			
r for the	Rivers.shp	8/23/2018 2:07 PM	SHP File	3.583 KB			
	Rivers.shp	8/23/2018 2:07 PM	XML Document	2 KB			
work	Rivers.shx	8/23/2018 2:07 PM	SHX File	18 KB			
VVUIK	Towns.cpg	8/24/2018 10:08 AM	CPG File	1 KB			
	Towns.dbf	8/24/2018 10:08 AM	DBF File	10 KB			
	Towns.prj	8/23/2018 2:05 PM	PRJ File	1 KB			
) (P:)	Towns.sbn	8/24/2018 10:08 AM	SBN File	1 KB			
	Towns.sbx	8/24/2018 10:08 AM	SBX File	1 KB			
er\DSG) (S:)	Towns.shp	8/24/2018 10:08 AM	SHP File	2 KB			
> 📻 MKEDIRJEMAL (\\IFPRI-FS2\user\DSG) (U:)	Towns.shx	8/24/2018 10:08 AM	SHX File	1 KB			
> APPS (\\IFPRI-FS4) (Y:)							
TORIVE (\\IEPRI-ES4) (Z)							
> 🔛 My Passport (G:)							
> 🔜 USB Drive (E:)							
Natwork							

32 items

In Window

you will se

files for ea

You need

files in orc

shapefile

properly a

vithin GIS

In ArcCatalog, these files are packaged and presented as one file in order to facilitate copying from / to other folders.

Lab 03: Choropleth Mapping

Understanding the spatial layout-dispersion and clustering of specific indicators

Population Density

Population Count

Lab 03: Choropleth Mapping

Layer Properties		×
General Source Select	tion Display Symbology Fields Definition Query Labels Joins & Relates Time HTML Popu	p
Show: Features Categories Quantities 	Draw quantities using color to show values. Impot Fields Classification Value: TOTPOP Nomalization: none Color Ramp: Classes: Symbol Range 1130 - 5000 1130 - 5000 5001 - 10000 5001 - 10000 10001 - 15000 10001 - 15000 15001 - 20000 15001 - 20000 20001 - 50000 20001 - 50000 50001 - 100000 50001 - 100000 100001 - 254158 100001 - 254158 Show class ranges using feature values Advanced •	
	OK Cancel App	ly

GIS PART II

Questions from Lab 01?

Questions from Lab 02?

Questions from Lab 03?

Population Density

Population Count

Moving Forward ...

- Using Google Earth:convert layer(shapefile)/map to KML
- Projections
- GPS data from the field

Convert map layer to KML (in ArcMap)

- The Map to KML tool allows multiple layers in an ArcMap map document data frame to be simultaneously exported to a KML file.
- Each layer will be maintained as a distinct folder in the KML, unless the option is used to convert all layers to a single flattened image
- Create or open a saved map document
- Open ArcMap's Toolbox
 - Navigate to Conversion Tools: Map to KML
 - Double-click 'Map to KML'
 - Locate the saved map document
 - Define the output file (KML)
 - Click 'OK'
- Locate the saved KMZ file and double click

Śм	Лар То КМL	-)	×
Мар	p Document				^
C:	VDSG \Emily \Papua New Guinea \GIS training \Lab04_MKJ.mxd			2	
Dat	ta Frame				
La	iyers			\sim	
Out	tput File			_	
C:	\DSG\Emily\Papua New Guinea\GIS training\Lab04\Lab04_survey_communities.kmz			2	
Мар	p Output Scale (optional)				
				0	
\checkmark	Clamped features to ground (optional)				
¥ Da	ta Content Properties				
¥ Ex	tent Properties				
¥ Ou	Itput Image Properties				
					\sim
	OK Cancel Environments.		Show He	lp >>	

📚 Lab04_MKJ_Survey

Convert Shapefile to KML (in ArcMap)

- Open and Review Shapefile via ArcMap
- Define that Shapefile's symbology as desired
- Open ArcMap's Toolbox
 - Navigate to Conversion Tools: Layer to KML
 - Double-click 'Layer to KML'
 - Select the symbolized 'layer'
 - Define the output file (KML)
 - Click 'OK'
- Open Google Earth
- Open KML in Google Earth

Questions?

Geographic Projections

Cold War Cartography

Was the USSR really that massive!?

Mercator Projection

Orthographic Projection

The USSR was big, but maybe not as big as we thought.

Image 2. In *Time*, 12 February 1951. p.36. © by RMC, R. L. 02-S-41. www.randmcnally.com.

Time Magazine (1951): Rand McNally ad lambasting Mercator as the man who made USSR look so big.

The creation of a flat map creates Distortion – How do we identify it?

Orthographic projection

Β.

Mercator Projection

Transformation to the plane

Round World

Flat Map

Map Projection Techniques

Step 1

Reduce the Earth's size to that of an imaginary globe

Reference Globe

A model of the earth at a reduced scale, that is used to project the landmasses and graticule onto a flat map

Map projection techniques

Step 2

Project the graticule from the reference globe onto the developable surface

Developable Surface

A mathematically definable surface onto which the land masses and graticule are projected from the reference globe

Case

The Case of a projection relates to how the developable surface is positioned with respect to the reference globe

Case can be described as

- Tangent or
- Secant

Tangency

In a tangent case of a map projection, the reference globe only touches the developable surface along one line, or at one point in the case of the planar projection.

Secant case

A secant case of a map projection occurs when the developable surface *passes through* the reference globe, producing two lines of contact

Standard line & scale variation

Figure 8.12 – Slocum, Chapter 8

Back to the USSR: Choosing tangent or Secant case

Figure 8.13 – Slocum, Chapter 8

Distortion patterns

Types of Projections cont. Universal Transverse Mercator (UTM)

- The UTM system is not a single map projection
- The system employs a series of sixty zones, each of which is based on a specifically defined secant Transverse Mercator projection.

UTM projection cont.

The Mercator projection maps the world onto a cylinder where the central ring of tangency is the Earth's Equator. (Remember USSR?) Turning the Mercator projection's cylinder so that it is tangent to the Earth along a meridian (longitude line) results in what is called a **Transverse Mercator** projection. The Universal Transverse Mercator system of projections deals with this by defining 60 different standard projections.

Each projection has a different Transverse Mercator projection that is slightly rotated to use a different meridian as the central line of tangency.

So, what is the UTM projection of PNG?

So, what does this have to do with your analysis?

The first step in problem solving spatial data is to check the projection.

If the projection is 'undefined' or is different from the other 'Layers' in your Data Frame it will not merge nicely and you will not be able to do ANY spatial analysis!

You will experiment with different projections to understand what can be preserved and what is lost due to geographic projection decisions

You have been given detailed surveyed community point information, which was collected using GPS units in the field. Unfortunately, it is not displaying correctly in the data frame. You will need to project the data correctly and perform any analysis.

Surveyed community location

GPS data from the field, when projected correctly allows for new data creation and facilitates data comprehension when analyzing across geographic space.

8 Que 9

Once you master projections, you can use data from a variety of sources in order to create more data and perform more analysis.

What are we looking at?

What can we question about population density and infrastructure?

P'yongyang

Seoul

Spatial Joins

Moving along ...

- Spatial Data Integration
 - Spatial Join
 - Spatial Join with the health centers in PNG
 - Tabular Join

Spatial data integration –Lab 06...

Two Types of Data to be managed in GIS

- Spatial Data (Where things are)
- Tabular data (What things are)

Spatial Joins can generate interesting statistics about SSA:

- Compare road density and surface type by country, province, district, etc.
- Compare road kilometer length and surface type by country, state/province, etc.

Spatial join can also calculate population counts and densities within specified geographic regions

Lab 06

- How do the number of Health centers relate to the population density figures you worked with in Lab03?
- How would we calculate Health center per capita figure for district level statistics?

Tabular Joins

- Tabular Data
 - Merging other datasets to GIS shapefiles
 - Census
 - HHS
 - DHS
 - Environmental Surveys

Excel to ArcGIS

Formatting Rules:

- No spaces in field names
- Numeric and text fields must be designated as such
- Field names no longer than 11 digits (to permanently append to the shapefile)

	А	В	С	D	E	F	G	Н	I.
1	Province	Prov_PCODE	District	Dist_PCODE	LLP	LLP_PCODE	ID	GEOCODE	TOTPOP
2	Sandaun	PG18	Vanimo-Green River	PG184	WALSA RURAL	PG1845	150416	15041600000	5994
3	Sandaun	PG18	Vanimo-Green River	PG184	AMANAB RURAL	PG1841	150412	15041200000	9579
4	Sandaun	PG18	Vanimo-Green River	PG184	GREEN RIVER RURAL	PG1843	150414	15041400000	10886
5	Sandaun	PG18	Aitape-Lumi	PG181	WEST WAPEI RURAL	PG1814	150104	15010400000	8987
6	Sandaun	PG18	Aitape-Lumi	PG181	EAST WAPEI RURAL	PG1812	150102	15010200000	7851
7	Sandaun	PG18	Nuku	PG182	YANGKOK RURAL	PG1823	150207	15020700000	12671

LLP_Pop05

	FID	Shape *	ID	NAME	GEOCODE	Province	Prov_PCODE	District	Dist_PCODE	LLP_PCODE
Þ	0	Polygon	150416	WALSA RURAL	15041600000	Sandaun	PG18	Vanimo-Green River	PG184	PG1845
	1	Polygon	150412	AMANAB RURAL	15041200000	Sandaun	PG18	Vanimo-Green River	PG184	PG1841
	2	Polygon	150414	GREEN RIVER RURAL	15041400000	Sandaun	PG18	Vanimo-Green River	PG184	PG1843
	3	Polygon	150104	WEST WAPEI RURAL	15010400000	Sandaun	PG18	Aitape-Lumi	PG181	PG1814
	4	Polygon	150102	EAST WAPEI RURAL	15010200000	Sandaun	PG18	Aitape-Lumi	PG181	PG1812
	5	Polygon	150207	YANGKOK RURAL	15020700000	Sandaun	PG18	Nuku	PG182	PG1823
	6	Polygon	150308	NAMEA RURAL	15030800000	Sandaun	PG18	Telefomin	PG183	PG1831

Linking Tabular Data

Primary Key: Unique Identifier for EACH row of information a particular data file

Table

□ - 畠 - 囁 № 12 @ ×											100					
	P_Pop05 ×												×	2.22	2002	41
	FID	Shape *	ID			NAME	GEOCODE	Pro	/ince P	Prov_PCODE	Dist	rict	<u>^</u>			-62
	0	Polygon	150416	WALS	A R	URAL	15041600000	Sandaun		PG18	Vanimo-Green	River I	- 833	06/824535	1.1.1	33
	1	Polygon	150412	AMAN	AB	RURAL	15041200000	Sandaun		PG18	Vanimo-Green River		239	2203.55		233
	2	Polygon	150414	GREEN	EEN RIVER RURAL		15041400000	Sandaun F		PG18	Vanimo-Green River		22	No. of Lot.	1.566	33
3 Polygon 150104 WEST Table					Ta	ble					•					
	4	Polygon	150102	EAST												
	5	Polygon	150207	YANG	0	┺ - ┕	🚰 🖂 🕀 🛪	ς								
	6	Polygon	150308	NAME/	ns	o census 2005\$;
	7	Polygon	150205	MAWA			District		Diet DCODE	=	LLD		ID	CEOCODE	TOTROP	T .
<					⊢	PC00_PC00L	Vanimo Green E	liver	DIST_FCOD			DC1845	150/16	15041600000	5004	<u>-</u> ^
		0	► H		⊢	PG18	Vanimo Green F	Diver	PG184			PG1841	150410	15041200000	0570	
					⊢	PG18	Vanimo-Green F	liver	PG184	GREEN RIVE		PG1843	150412	15041200000	10886	-
LLP_Pop05 nso_census_2005\$				F	PG18	Aitane-Lumi		PG181	WEST WARE		PG1814	150104	15010400000	8987	-	
					F	PG18	Aitape-Lumi		PG181	FAST WAPE		PG1812	150102	15010200000	7851	-
					⊢	PG18	Nuku		PG182	YANGKOK R	URAI	PG1823	150207	15020700000	12671	-
			F	PG18	Telefomin		PG183	NAMEA RUR	AL	PG1831	150308	15030800000	7673	-		
				PG18	Nuku		PG182	MAWASE RURAL		PG1821	150205	15020500000	21778	Ξ.		
			1				1				-	-		⊢ ' >		
						• • •) > >1 🗐	🔲 (0 ou	t of 297 Selec	ted)						-
								(000	COLON DELEC	icu)						
					Ľ	LP_Pop05 nso_	census_2005\$									

When tabular data are successfully merged with spatial attributes, we can evaluate variations among disaggregated variables, and trends over time and throughout space

Lab 07

Exercise Overview

- You have received detailed Household Census information from NSO-PNG. The data is in Microsoft Excel format, and you need to integrate this information into ArcMap to create a thematic map.
- To achieve this you must conduct a Table Join. A table join appends attributes of a non-spatial table, to the attributes of a map table. (Non-Spatial means "without geography", i.e.: without map attached). In order for this join to be successful there must be a way to match records in one table with appropriate records in another.

Tabular Joins cont'd

Agricultural system mapping

QUESTIONS ON LAB 7?

In the last lab we merged census tabular data to display in a more visual map format

Now we will continue with agricultural system map:

- The Papua New Guinea Agricultural Systems Project produced information on smallholder agriculture at provincial and national levels.
- Information was collected by field observation, interviews with villagers and reference to published and unpublished documents.
- The projected identified 287 discrete agricultural systems.

