

Papua New Guinea Country Strategy Support Program

Workshop on Price and Trade Policy Analysis

Monday, 6 November to Friday, 17 November, 2023

International Food Policy Research Institute Washington, D.C.

The PNG Country Program is funded by Australia DFAT

PNG Workshop: Agricultural Policy Analysis with Partial Equilibrium Models

Day 2: Tuesday, November 7:

Morning: PE Model 1c (1 comm; 8 hhs);

Sweet potato sims (closed economy)

Afternoon: PE Model 1d (1 comm; multiple hhs);

Coffee sims (open economy)

A Basic Partial Equilibrium Model:

Simulation Analysis of Supply, Demand and Prices

Supply, demand and international trade

Import parity, prices and imports

Spreadsheet analysis of shocks with and without private imports (Model 1)

Short-run Impact of a Supply Shock (with Fixed Production)

Short-run Impact of a Supply Shock

Impact of a Supply Shock (with Endogenous Production)

Short-run Impact of a Supply Shock

- In a normal year, domestic production = S₀
- Supply (S₀) equals demand (D₀) at market clearing price (P₀)
- If supply increases due to favorable weather for crops, the supply curve shifts from S₀ to S₁ and the market clearing price falls to (P₁)

A Basic Partial Equilibrium Model

(1) $S_1 = S_0 * (P_1/P_0)^{\gamma 1}$

(2) $D_1 = D_0 * (P_1/P_0)^{\beta 1} * (Y_1/Y_0)^{\beta 2}$

(3) $S_1 = D_1$

S = Supply;D = Demand; P = Price Y = Income $\gamma 1 = own-price elasticity of supply$

 $\beta 1$ = own-price elasticity of demand $\beta 2$ = income elasticity of supply

Equilibrium Condition

Some Mathematics of Elasticities

(1) S = a * P ^{γ1}

Taking the derivative with respect to P:

(2)
$$dS / dP = a^* \gamma 1^* P^{(\gamma 1 - 1)}$$

= $a^* \gamma 1^* P^{\gamma 1} / P$
= $\gamma 1^* (a^* P^{\gamma 1}) / P$
= $\gamma 1^* S / P$ (using the definition of S from equation 1

==> $(dS/S) / (dP/P) = \gamma 1$

Or in discrete terms, $(\Delta S/S) / (\Delta P/P) = \gamma 1$

S = Supply; P = Price

Elasticity Formulas (with Logarithms)

(1) $S_1 = S_0 * (P_1/P_0)^{\gamma 1}$

 $\frac{\ln(S_1) = \ln(S_0) + \gamma 1^* \ln(P_1/P_0)}{\ln(S_1 / S_0) = \gamma 1^* \ln(P_1/P_0)}$ d ln(S_1 / S_0) / d ln(P_1/P_0) = \gamma 1

 $\gamma 1$ = own-price elasticity of supply

(2)
$$D_1 = D_0 * (P_1/P_0)^{\beta_1} * (Y_1/Y_0)^{\beta_2}$$

 $\begin{aligned} &\ln(D_1) = \ln(D_0) + \beta 1^* \ln(P_1/P_0) + \beta 2^* \ln(Y_1/Y_0) \\ &\ln(D_1 / D_0) = \beta 1^* \ln(P_1/P_0) + \beta 2^* \ln(Y_1/Y_0) \\ &d \ln(S_1 / S_0) / d \ln(P_1/P_0) = \beta 1 \end{aligned}$

 $\beta 2$ = own-price elasticity of demand

PNG Sweet Potato Market Simulations (Model 1)

Endogenous Price w/ Zero Imports

(1) $S_1 = XS_0 * \text{shock} * (P_1/P_0)^{\gamma 1}$

(1) $D_1 = D_0 * (P_1/P_0)^{\beta 1} * (Y_1/Y_0)^{\beta 2}$

(2) $S_1 = D_1$

S = Supply; X = Production, D = Demand; P = Price γ 1 = own-price elasticity of supply

 $\beta 1$ = own-price elasticity of demand $\beta 2$ = income elasticity of supply

Equilibrium Condition

PNG Sweet Potato Simulations

Price change		13.0%	8.1%	3.2%	-2.4%	Fuele and Drive w/ Fired laws of a
Residual		0.0	0.0	0.0	0.0	Endogenous Price W/ Fixed Imports
	2021	2021	2021	2021	2021	
	Base	Sim 1	Sim 2	Sim 3	Sim 4	(1) $S_1 = QS_0^{\circ} \text{ shock } (P_1/P_0)^{\circ}$
		(-10% Prod)	(-10% Prod)	(-10%Q,Y)	(+20%Q;10%Y)	
		es=0.4;ed=-0.5	es=0.9;ed=-0.5	es=0.9;ed=-0.5	es=0.9;ed=-0.5	(2) $D_1 = D_0 (P_1/P_0)^{p_1} (Y_1/Y_0)^{p_2}$
Production ('000 tons)	699.0	660.6	675.0	647.0	752.1	
Losses (10 percent)	97.0	91.7	93.7	89.8	104.4	(3) $S_1 = D_1$
Net Production ('000 tons)	602.0	568.9	581.3	557.2	647.7	S = Supply: OS = Production
						D = Demand: P = Price
Private imports ('000 tons)	0.0	0.0	0.0	0.0	0.0	
Subtotal ('000 tons)	602.0	568.9	581.3	557.2	647.7	
						To solve the Excel model:
Private stock change ('000 tons)	0.0	0.0	0.0	0.0	0.0	
Supply	602.0	568.9	581.3	557.2	647.7	Data / "What-If Analysis / Goal Sook
						Data / What-II Analysis / Goal Seek
Demand ('000 tons)	602.0	568.9	581.3	557.2	647.7	Set Call: D2 (residual - S.D)
Per Capita Demand (kg/person/month)	59.4	56.1	57.3	54.9	63.9	Set Cell. DZ (residual = 5- D)
Per Capita Supply (% change)	0.0%	-5.5%	-3.4%	-7.4%	7.6%	By changing calls (1 (price))
						By changing cent GT (price)
Per Capita Income (2021/22 = 100)	1.00	1.00	1.00	0.90	1.10	
						OR
Productivity	1.00	0.90	0.90	0.90	1.10	Data / Cabuar
						Data / Solver
Elasticity of Supply		0.40	0.90	0.90	0.90	Cot Objectives (DC) (residual OD)
Income Elasticity of Demand		0.50	0.50	0.50	0.50	Set Objective: D^2 (residual = S-D)
Own Price Elasticity of Demand		-0.50	-0.50	-0.50	-0.50	
•						By Changing Cell: \$D\$1 (price)

PNG Sweet Potato Simulations

Price change		13.0%	8.1%	3.2%	-2.4%
Residual		0.0	0.0	0.0	0.0
	2021	2021	2021	2021	2021
	Base	Sim 1	Sim 2	Sim 3	Sim 4
		(-10% Prod)	(-10% Prod)	(-10%Q,Y)	(+20%Q;10%Y)
		es=0.4;ed=-0.5	es=0.9;ed=-0.5	es=0.9;ed=-0.5	es=0.9;ed=-0.5
Production ('000 tons)	699.0	660.6	675.0	647.0	752.1
Losses (10 percent)	97.0	91.7	93.7	89.8	104.4
Net Production ('000 tons)	602.0	568.9	581.3	557.2	647.7
Private imports ('000 tons)	0.0	0.0	0.0	0.0	0.0
Subtotal ('000 tons)	602.0	568.9	581.3	557.2	647.7
Private stock change ('000 tons)	0.0	0.0	0.0	0.0	0.0
Supply	602.0	568.9	581.3	557.2	647.7
Demand ('000 tons)	602.0	568.9	581.3	557.2	647.7
Per Capita Demand (kg/person/month)	59.4	56.1	57.3	54.9	63.9
Per Capita Supply (% change)	0.0%	-5.5%	-3.4%	-7.4%	7.6%
Per Capita Income (2021/22 = 100)	1.00	1.00	1.00	0.90	1.10
Productivity	1.00	0.90	0.90	0.90	1.10
Elasticity of Supply		0.40	0.90	0.90	0.90
Income Elasticity of Demand		0.50	0.50	0.50	0.50
Own Price Elasticity of Demand		-0.50	-0.50	-0.50	-0.50

Simulation 1: Short Term (inelastic parameters)

- With es = 0.4 and ed = -0.5, a 10% reduction in productivity leads to 5.5% decrease in output and a 13% price increase.
- The total decline in production (5.5%) is the combined effect of the price effect on supply (εs * Δ% Price = 0.4 * 13% = +5.2%) and the 10% decrease in productivity

Simulation 2: Medium Term (more elastic parameters)

- With es = 0.9 and ed = -0.5, a smaller price increase is required to increase production and balance domestic supply and demand.
- The poultry price increases by only 8.1% in Simulation 2, compared to 13% in Simulation 1.

* Assumes no change in stocks.

PNG Sweet Potato Simulation Results

- Sim 1: 10% reduction in productivity reduces the supply, leads to 13% increase in the market price and lowers production (and consumption) by 5.5%.
- Sim 3: 10% decrease in productivity with 10% decrease in incomes leads to a 3% increase in the market price and a 7% increase in production and consumption.

Sim 1: -10% productivity (S-Run) Sim 3: Sim 2 w/ -10% Incomes Sim 2: -10% productivity (L-Run) Sim 4: +20% productivity; +10% Incomes

PNG Sweet Potato Simulations

Price change		13.0%	8.1%	3.2%) -2.4%
Residual		0.0	0.0	0.0	0.0
	2021	2021	2021	2021	2021
	Base	Sim 1	Sim 2	Sim 3	Sim 4
		(-10% Prod)	(-10% Prod)	(-10%Q,Y)	(+20%Q;10%Y)
		es=0.4;ed=-0.5	es=0.9;ed=-0.5	es=0.9;ed=-0.5	es=0.9;ed=-0.5
Production ('000 tons)	699.0	660.6	675.0	647.0	752.1
Losses (10 percent)	97.0	91.7	93.7	89.8	104.4
Net Production ('000 tons)	602.0	568.9	581.3	557.2	647.7
Private imports ('000 tons)	0.0	0.0	0.0	0.0	0.0
Subtotal ('000 tons)	602.0	568.9	581.3	557.2	647.7
Private stock change ('000 tons)	0.0	0.0	0.0	0.0	0.0
Supply	602.0	568.9	581.3	557.2	647.7
Demand ('000 tons)	602.0	568.9	581.3	557.2	647.7
Per Capita Demand (kg/person/month)	59.4	56.1	57.3	54.9	63.9
Per Capita Supply (% change)	0.0%	-5.5%	-3.4%	-7.4%	7.6%
Per Capita Income (2021/22 = 100)	1.00	1.00	1.00	0.90	1.10
Productivity	1.00	0.90	0.90	0.90	1.10
Elasticity of Supply		0.40	0.90	0.90	0.90
Income Elasticity of Demand		0.50	0.50	0.50	0.50
Own Price Elasticity of Demand		-0.50	-0.50	-0.50	-0.50

Simulation 3:

Ο

0

- With es = 0.9 and ed = -0.5, a 10% reduction in productivity along with 10% reduction in incomes leads to 7.4% decrease in output and a 3.2% price increase.
- The total decline in production (7.4%) is the combined effect of the price effect on supply
 (εs * Δ% Price = 0.9 * 3.2% = +2.88%) and the 10% decrease in productivity

Simulation 2: Medium Term (more elastic parameters)

- With es = 0.9 and ed = -0.5, a smaller price increase is required to increase production and balance domestic supply and demand.
- The poultry price increases by only 8.1% in Simulation 2, compared to 13.0% in Simulation 1.

* Assumes no change in stocks.

PNG Sweet Potato Model: Multiple Household Groups

	Sim 1	Sim 2	Sim 3	Sim 4
	-10% Prod	-10% Prod	-10% Q, Y	20%Q;10%Y
	Short-run	Medium-run	Medium-run	Medium-run
Urb Hi Poor	-1.9%	-1.2%	-2.6%	2.3%
Urb Hi NPoor	-2.1%	-1.3%	-2.4%	2.2%
Oth Urb Poor	-2.2%	-1.4%	-2.4%	2.2%
Oth Urb NPoor	-1.9%	-1.2%	-2.2%	1.9%
Rur Hi Poor	-3.7%	-1.9%	-6.9%	7.4%
Rur Hi NPoor	-5.3%	-3.4%	-7.4%	7.5%
Oth Rur Poor	-7.5%	-4.8%	-8.6%	8.6%
Oth Rur NPoor	-6.8%	-4.3%	-8.1%	8.2%

Demand Parameters (expenditure elasticity, own-price elasticity)

Urban Highlands Poor	(0.20, -0.1533)
Urban Highlands Non-poor	(0.18, -0.1728)
Other Urban Poor	(0.18, -0.18)
Other Urban Non-poor	(0.16, -0.16)
Rural Highlands Poor	(0.63, -0.4879)
Rural Highlands Poor Rural Highlands Non-poor	(0.63, -0.4879) (0.62, -0.5626)
Rural Highlands Poor Rural Highlands Non-poor Other Rural Poor	(0.63, -0.4879) (0.62, -0.5626) (0.68, -0.68)
Rural Highlands Poor Rural Highlands Non-poor Other Rural Poor Other Rural Non-poor	(0.63, -0.4879) (0.62, -0.5626) (0.68, -0.68) (0.65, -0.65)

Household Demand

- (1) $D_{h,1} = D_{h,0} * (P_1/P_0) \beta^{1,h} * (Y_{h,1}/Y_{h,0}) \beta^{2,h}$
- D = Demand; P = Price, Y=Income
- Each household group faces the same market price of sweet potatoes (P)
- Household incomes (Y_h) are exogenous

(2) $D = \sum_{h} D_{h}$

- Total demand = the sum of demands by each household type
- Higher prices of sweet potatoes associated with the productivity shocks (Sims 1 and 2) result in steep declines in household consumption of sweet potatoes.

Diao et al. (2021)

PNG Sweet Potato Simulation Results: Household Consumption

- Sim 1: A 10% reduction in productivity lowers consumption of sweet potatoes of urban highland poor households by 1.9%.
- Sim 4: 20% **increase** in productivity with a 10% increase in household incomes raises sweet potato consumption by 7.4% and 7.5% for rural highland poor and nonpoor households, respectively.

Exercise 1: Sweet Potato Model Simulations

- Scenario 1: Household incomes increase by 20 percent. Consider two cases:
 - a) own-price elasticity of supply (es) of sweet potato is 0.4.
 - b) es = 0.9.
- Scenario 2: Losses in sweet potato are twice the expected loss.
- Scenario 3: Sweet potato productivity increases by 20 percent and household incomes rise by 10 percent.

For each scenario, explain why the percentage change in sweet potato consumption varies by income/household group.

Caveats (Limitations of the Model Analysis)

- The model results depend on:
 - Base data on production, household consumption, trade and prices
 - Model parameters (elasticities of supply and demand)
- There is considerable uncertainty in the household consumption data and the assumptions used in creating the base data set for 2021.
 - \circ The elasticities used are only rough approximations (based on cross-section state-level data!)
- High marketing costs, unofficial restrictions on trade, periodic conflicts, etc. inhibit market flows ==> there is no one national price and marketing margins across locations are not constant in percentage terms.
 - Periodic changes in government policy, production shocks and world price shocks may have greater effects on market outcomes than the shocks and policies modeled.

Sensitivity analysis is needed!

References

Coady, David, Paul Dorosh and Bart Minten. 2009. "Evaluating Alternative Policy Responses to Higher World Food Prices: The Case of Increasing Rice Prices in Madagascar", *American Journal of Agricultural Economics* 91(3) (August 2009): 711-722.

Dorosh, Paul A. 2021. "Distributional consequences of wheat policy in Sudan: A simulation model analysis", Sudan Strategy Support Program (SSSP) Working Paper No. 2, Washington, D.C.: IFPRI. <u>https://doi.org/10.2499/p15738coll2.134867</u>

Dorosh, Paul A. 2001. "Trade Liberalization and National Food Security: Rice Trade between Bangladesh and India", *World Development*, 29(4): 673-689.

United States Department of Agriculture (USDA). 2021. Foreign Agricultural Service. Production, Supply and Distribution data. <u>https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads</u>

Diao, Xinshen, Paul Dorosh, Peixun Fang and Emily Schmidt. 2021. "Effects of Covid-19 and Other Shocks on Papua New Guinea's Food Economy: A Multi-Market Simulation Analysis", IFPRI Discussion Paper 02004 (February).

https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134293/filename/134501.pdf

