EQUATION SYSTEM FOR UNCONSTRAINED SAM MULTIPLIER

	Activities		Commodities		Factors	House- holds	Exogenous demand	Total
	A1	A2	C1	C2	F	Н	E	
A1			X1					X1
A2				X2				X2
C1	Z ₁₁	Z ₁₂				C1	E1	Z1
C2	Z ₂₁	Z ₂₂				C ₂	E ₂	Z2
F	V1	V2						V
Н					$V_1 + V_2$			Y
E			L1	L ₂		S		E
Total	X1	X2	Z1	Z ₂	V	Y	E	

We replace actual numbers in the SAM with the following symbols.

We divide columns by their total to derive the coefficients matrix (M-matrix). Note that the M-matrix excludes the exogenous components of demand.

	Activities		Commodities		Factors	House-	Exogenous	Total
						holds	demand	
	A1	A2	C1	C2	F	Н	E	
A1			b1= X1/Z1					X1
A2				$b_2 = X_2/Z_2$				X ₂
C1	a ₁₁ =Z ₁₁ /X ₁	a ₁₂ =Z ₁₂ /X ₂				$c_1 = C_1/Y$	E1	Z1
C2	$a_{21}=Z_{21}/X_1$	a ₂₂ =Z ₂₂ /X ₂				$c_2 = C_2 / Y$	E ₂	Z2
F	$v_1 = V_1 / X_1$	$v_2 = V_2 / X_2$						V
Н					1			Y
E			$I_1 = L_1/Z_1$	$I_2 = L_2/Z_2$		s = S/Y		E
Total	1	1	1	1	1	1	E	

Values

- X Gross output of each activity (i.e., X₁ and X₂)
- Z Total demand for each commodity (i.e., Z₁ and Z₂)
- V Total factor income (equal to household income)
- Y Total household income (equal to total factor income)
- E Exogenous components of demand (i.e., government, investment, and exports)

<u>Shares</u>

- a Technical coefficients (i.e., input or intermediate shares in production)
- b Share of domestic output in total demand
- v Share of value-added or factor income in gross output
- I Share of the value of total demand from imports or commodity taxes
- c Household consumption expenditure shares
- s Household savings rate (i.e., savings as a share of household income)

So we can now derive equations representing the relationships in the SAM. We start with the simple demand equations.

$$Z_1 = a_{11}X_1 + a_{12}X_2 + c_1Y + E_1$$

$$Z_2 = a_{21}X_1 + a_{22}X_2 + c_2Y + E_2$$
(A1)

Total demand = intermediate demand + household demand + exogenous demand

From the SAM, we know that domestic production X is only part of total demand Z.

 $X_1 = b_1 Z_1$ and $X_2 = b_2 Z_2$ We know that household income Y depends on the share each factor earns in each sector. $Y = v_1 X_1 + v_2 X_2$ or $Y = v_1 b_1 Z_1 + v_2 b_2 Z_2$

Now we replace Xs and Vs in Equation A1.

$$Z_1 = a_{11}b_1Z_1 + a_{12}b_2Z_2 + c_1(v_1b_1Z_1 + v_2b_2Z_2) + E_1$$

$$Z_2 = a_{21}b_1Z_1 + a_{22}b_2Z_2 + c_2(v_1b_1Z_1 + v_2b_2Z_2) + E_2$$

We move everything except for E onto the left-hand side.

$$Z_1 - a_{11}b_1Z_1 - c_1v_1b_1Z_1 - a_{12}b_2Z_2 - c_1v_2b_2Z_2 = E_1$$

- $a_{21}b_1Z_1 - c_2v_1b_1Z_1 + Z_2 - a_{22}b_2Z_2 - c_2v_2b_2Z_2 = E_2$

We group Zs together.

$$(1 - a_{11}b_1 - c_1v_1b_1)Z_1 + (-a_{12}b_2 - c_1v_2b_2)Z_2 = E_1$$

(-a_{21}b_1 - c_2v_1b_1)Z_1 + (1 - a_{22}b_2 - c_2v_2b_2)Z_2 = E_2 (A2)

We express Equation A2 in matrix format.

$$\begin{pmatrix} 1 - a_{11}b_1 - c_1v_1b_1 & -a_{12}b_2 - c_1v_2b_2 \\ -a_{21}b_1 - c_2v_1b_1 & 1 - a_{22}b_2 - c_2v_2b_2 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$
(A3)

The first term in Equation A3 is the identity matrix (I) minus the coefficient matrix (M).

$$\begin{pmatrix} 1 - a_{11}b_1 - c_1v_1b_1 & -a_{12}b_2 - c_1v_2b_2 \\ -a_{21}b_1 - c_2v_1b_1 & 1 - a_{22}b_2 - c_2v_2b_2 \end{pmatrix} = I - M$$

If we rename the other two vectors Z and E then we can simply Equation A3. (I - M)Z = E

Rearranging, we get the final multiplier equation.

$$Z = (I - M)^{-1}E$$
(A5)
Total demand = multiplier matrix × exogenous demand

(A4)

This tells us that when exogenous demand [E] increases, then after you have taken all the direct and indirect multiplier effects into account [(I-M)⁻¹], you will end up with a final increase in total demand equal to Z.